











densities on the performance of a particular navigation algorithm), or it can be chosen
according to the standard model of Martian terrain, developed by Moore [ 19]. According
to Moore's model, the number of rocks per square mecter with a diameter Icss thanor equal
to a given size D) is:

N=kD-2.66 (1)

where k is a parameter that varics according to the particular location onthe surf ace.. This
model is an empirical fit to the rock size distiributions observed at the two Viking lander
sites. It is accurate only for 1) >14 cm, which is fortuitous since this is about the smallest
size rock that the laser ranging sensor will detect as an obstacle. If onc assumes that the
Moore model distribution holds over the entire planet, then thermal inertia data indicate that
the modal value of k for all of Mars is approximately 0.004 15; this case is referred to as
"Mars-nominal" terrain.

1.ocations for obstacles arc generated using a random number g,cne.rater. Rocks are
placed at the prescribed location using at ape measure. Scttingup a test course is time-
consuming Work, so each course was used for four runs, two in cach direction. This also
allows some interesting statistical analysis to be done to determine, for example, how
repeatable (and thus how predictable) the rover’s perfor mance iSin agiven terrain.

The rover moves in discrete steps, where each step is eithes a turn in place or a
forward movement of approximately Onc wheel radius (7 cm). After each step a
supervisory program running onan off-board workstation 1ccorded the rover’s position
and heading as computed by dead reckoning, the roves's absolute. position, the state of the
rover’'s obstacle detectors, and a time stamp. Datascts were indexed to records of the
terrain layout in which they were run.

5. Results

The rover is quite slow, moving at an average speed of less thanlem/s. Most of the
time is spent processing the data from the laser range finder. We were able to complete a
tot al of about 100 runs over t hc course of asummer, of which 40 werc performed in Mars-
nominalterrain. T'heremainder were performed undes avariet y Of ot her obst acle densitices,
including zero obstacles as a control case. (The zero-obstacle case was also used to
cval uatc the rover’s dead reckoning performance [18].)

The raw data consisted of a complete record of the rover's path for each run. Wc
reduced this data by computing two pes formance metrics for each run: total path Jength and
total traverse t imc (corrected for delays i ntroduced by the over head tracking system).

The reduced data for the Mars-nominal case arc depicted as a scatter plot in figurel.
Bach point on the plot corresponds to one 111171, The two axes rc.present the two ditferent
performance metrics. This figure illustrates our first result: path length and traverse time
arc poorly correlated; the correlation coefficient is 0.69. in this case the poor correlation is
easily explained by the fact that the rover occasionally turns in place as part of its navigation
stratcgy. Nevertheless, these results show that optimizing path length on the tacit
assumption that other performance. metrics will correlate may not be an effective strategy.

The cumulative distribution function for the reduced distance datais shownas the bold
line in figure 2.(Thisfigure shows the simulationresults superimposedon the results
from the real robot - sce section 6. The distribution function for time looks virtually
identical, but with a different scale on the y-axis. ) This figure illustrates our second result:
the distribution functions are not normal. in section 7 wc will show that they arc in fact







Rate gyro: 'T'he rate gyro included an accumulated drift error model that i ncorporated
the observed increased error when the robot comes in contact with arock [ 18].

Odometer: The odometer on the real robot measures the position of the wheels and
so cannot detect when the wheels slip in loose soil. The simulation odometer mimics this
behavior by recording the commanded distance traveled rather than the actual distance. The
odometer data is combined with the rate gyro data to compute the simmulated vehicle's dead-
reckoning position.

1.aser range sensor: The laser range sensor was modeled as a pair of simple
proximity sensors whose outlines were the effective coverage arca of the actual sensor.
This simulates the behavior of the sensor after the raw 1ange data is processed. Developing
a more sophisticated model of this sensor is high on the list of potential enhancements to
the system.

Despite the relatively simple nature of this simulation it produces remarkably high
quality results. Qualitatively, the behavior of the simulated rover is virtually
indistinguishable from that of the real one. lowever, this sort of gestalt assessment is
precisely the sort of informal, anecdotal result that we have criticized so severely. Wc
t herefore now proceed to demonst rate formal] y that we have capt uied some of the relevant
aspects of thereal rover’s behavior in our simulator model.

We duplicated the sandbox experiment on the simulator in two separate sets of
experimental trials. in the first set of trials we did 100 runs in each of nine different terrain
densities. (A random field of obstacles was generated for each run, so there were a total of
900 different obstacle fields used.) The results from time trials (excluding failures - sce
section 7.4) arc shown in figure 2 as cumulative probability distributions. The results from
the real robot arc superimposed as a bold linc. The M oorc-model parameter ranges from
0.00015 to 0.00815 in even increments of 0.()() 1.

In the second sct of simulator trials wc ran 804 runs using a Moore model parameter of
0.006. (See section 7.4 for an explanation of the apparent discrepancy between this and
the value of 0.00415 used for the real expcriments.) The results of these runs (again
excluding failures) arc shown infigure 3, superimposed with the real data and a best-fit
exponential curve. By visua inspection, thefit of all three curves appears to be quite good.
Sclected results when failures arc not excluded are shown in figure -4. As usua, the real
data arc superimposed as abold line. The results do not match the real data nearly as well,
indicating that the simulator’s emergent failure model miay be flawed.

in the next section we will formally analyzc these informal observations.

7. Analysis

1’0 draw conclusions about our data we employ statistical tests. ‘1 ‘here arc a number of
subtleissues in the usc of statistical tests and in the. interpretation of their results which arc
not common knowledge amongmobileroboticsrescarchers. Itis therefore worthwhile to
digress for a moment to discuss statistical tests in gene.l al before returning to the analysis of
our data. A reader familiar with statistical methods should feel free to skip to section 7.2.

7.1 Digression: on the nature of statistical tests

Statistical analysis is related to probability theory in that both deal with phenomena
| hat, by assumption, cent ai n elements that arc unmodel able a priori. 1 lowever, unli ke pure
probability theory, which attempts (o derive probabilities from first principles, statistics
deals with the problem of drawing conclusions about probability distributions by
examining scts of data points drawn from those distributions.






values. ) Note that this docs not mean that the distributions are exponential, just that we
can’'t distinguish any differences that there might be on the basis of the data wc have.

By way of contrast, if wc test tbc hypothesis that the distributions arc normal with
mean and variance cqual to the sampling means and variances of the two datasets, wc
obtain values of KS of 0.23 for distance and 0.18 for time. The corresponding null-
distribution probabilities for 40 data points are ().025 and 0.13. Thus wc can conclude
with better than 95% confidence that the distribution for distance. is not normal, and better
than 85% confidence! that the distribution for time is not normal.

7.3 Analysis 2: comparison of simulated and real results

To test the second hypothesis wc have three options. First, if we assume that the
distributions arc exponential wc could employ a parametric analysis and estimation theory
to derive a numerical solution (with error bounds) for the distribution functions and
compare them. However, the evidence that they are it) fact exponentialis prct ¢y thin, and
such an assumption could lead us seriously astray. The second alternative is to usc the
di screte form of the Kolmogorov-Smirnov test to compare them.  The third aternative is to
employ a diffc.rent test altogether. It turns out that for comparing two sampling
distributions there arc better methods available. We will usc a statistic advocated by
I.chmann [17], the Wilcoxon-Mann-Whitney (WMW) statistic.

The WM W gtatistic is computed as follows. 1.et D] and 132 be sets of m and n data
points drawn respectively from probability y distributions P1and 2. The datain 1> 1 and D2
arc combined and sorted. Each datum is then ranked according to its position in the sorted
list; the first number in the list is assigned the rank 1, the second number the rank 2, etc.
The ranks arc then separated according to which distribution (121 or D2) its corresponding
datum was drawn from. The separated lists of ranks arc then summed to produce two
numbers, S1 and S2.

It can be shown that if 1’1 and P2 arc the same, then S 1 and S2 have normal
probabilit y (distributions whose parameters arc independent of }’' 1 and P2. Instead, the
parameters depend on the number of data points, m and n:

E(S1) =n(m+n+1)/2
E(S2)=m(m+n+ 1)/2
Var(S1) =Var(S2)=mn(m+n41)/12

where 1i(X) denotes the expected value (mean) of arandom variable X, and Var(x) denotes
its variance. Because the variances arc the same, the quantity:

S=S1-n(m+n+1)/2:=S2-m(m+n+1)/2

is sometimes uscd instcad of S1 and S2. The variance of Sis the same as that of S 1 and
S2, and the mean Of Sis, of course., zero.

I'Usually, a confidence level of atleast 90% IS required for a result to be considered Statistically
significant. Arequirement of 95% confidence is comnon in many fields.







fitof the Simulator data and the rcal data is obtained when the Moore model parameter in the
simulator is set to approximately 0.006. 1 lowever, the value of the parameter in the real
experiments was 0.00415, the Mars Nomina value. This mismatch caused some
consternation until it was discovered that the minimum rock diameter, 1D, in the real
experiments was set to 10 cm rather than 14 as in the simulator, Moore’'s model is very
sensitive to the value of 1), in the 10-15 cm range, and this difference resulted in enough
additional obstacles to make the overall obstacle density approximately the same as the
simulator. (Actually, there were about twice. as many small rocks as there should have
been, but about half of those were ignored by the robot’s percept ion system.)

8. Conclusions and Ifuture Work

Wc arc working towards rigorous experimental study of autonomous mobilc robots.
Our approach is to employ the methods of the natural sciences in our investigations. We
usc simulations, but we treat them as modcls rather than as the system under study. The
value of a simulation is measured by how well it predicts the behavior of a physical system.
Woc usc statistical methods to evaluate our experimental data.

To date wc have carried out only aportion of our research program. Wc have
constructed a simulation and verified that it postdicts the behavior of a rcal robot in a
statistically meaningful way. Wc have also used the simulator to gencrate predictions about
the behavior of the rover under conditions in which it has never been tested. The final step
of our research, to be completed this summer, iSto test these predictions by performing a
second series of experiments.

Our work offers two central contributions. Wc offer the first solid experimental
evidence that certain performance metrics, often tacitly assume.d to be wc]] correlated, can
in fact be highly uncorrelated in practice. In retrospect this is fairly obvious; nevertheless,
it is afact often ignored in the literature.

Our second contribution is the introduction of statistical rigor to the evaluation of
cxperimental results. Wc have presented what is to our knowledge the first statistically
significant result in the. field of autonomous mobile 1obots, namely that the probability
distributions on certain performance metrics under certain conditions arc not normally
distributed. Wc used non-parametric methods for comparing probability distribution
functions. “I”his alows us to draw quantitative conclusions about the probabilities of certain
events without knowing a priori the shape of the probability distribution.

We would like to sce these results independently verified by other rescarchers. If the
shapes of the distributions on a variety of standardized tcsts can be conclusively established
then we can transition to more powerful parametric analysis methods in comparative
studies. Yurthermore, if it can be established with statistical rigor that a standardized
simulation is indeed an accurate model of a class of physical robots then the current
ongoing debate about the value of simulation: results would be settled, and the cost of
conducting comparative studics of control methodologies could be dramatically reduced.
1lowever, before this can be achieved a much larger corpus of experimental data gathered
under a variety of carefully controlled conditions needs to be established.

A complimentary line of research is to develop a mathematical theory to explain the
observed shapes of the probability distribution functions for the performance metrics wc
have chosen. They appear to be exponential, indicating that rover navigation in rough

However, inthis case the postdiction showed that what we thought was a negative result was, infact, a
positive one by predicting a mistaken assumption in out analysis.
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Figure 2: Cumulative probability distributions of the distance
metric for a goal 7.6 meters from the starting location at
various obstacle densities, superimposed on data from the real
robot (bold line). The curve furthest to tile left is for a Moore
model parameter of 0.0 0015, and each successive curve
increments this value by 0.001.
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Figure 3: Comparisons of three cumulative probability
functions for distance: 40 data points from the real rover, 629
data points from the simulator, and an exponential curve.
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Figure 4: Simulator results when failures are not ignored for
Moore parameters of 0.00415,0.00515 and 0.00615,
superimposed on the data from the real 1obot(boldline).



